3,869 research outputs found

    Dynamic remapping decisions in multi-phase parallel computations

    Get PDF
    The effectiveness of any given mapping of workload to processors in a parallel system is dependent on the stochastic behavior of the workload. Program behavior is often characterized by a sequence of phases, with phase changes occurring unpredictably. During a phase, the behavior is fairly stable, but may become quite different during the next phase. Thus a workload assignment generated for one phase may hinder performance during the next phase. We consider the problem of deciding whether to remap a paralled computation in the face of uncertainty in remapping's utility. Fundamentally, it is necessary to balance the expected remapping performance gain against the delay cost of remapping. This paper treats this problem formally by constructing a probabilistic model of a computation with at most two phases. We use stochastic dynamic programming to show that the remapping decision policy which minimizes the expected running time of the computation has an extremely simple structure: the optimal decision at any step is followed by comparing the probability of remapping gain against a threshold. This theoretical result stresses the importance of detecting a phase change, and assessing the possibility of gain from remapping. We also empirically study the sensitivity of optimal performance to imprecise decision threshold. Under a wide range of model parameter values, we find nearly optimal performance if remapping is chosen simply when the gain probability is high. These results strongly suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change; precise quantification of the decision model parameters is not necessary

    High pressure cosmochemistry applied to major planetary interiors: Experimental studies

    Get PDF
    The infrared spectra of H2O ice VII and D2O ice VII were studied and techniques were developed for measuring adiabats of phases of NH3-H2O to 5 GPa. A mixing system for pressurized fluids was constructed in which liquid solutions of definite compositions can be prepared and loaded reliably into diamond cells in a project which seeks to determine the properties and boundaries of several high pressure phases of the H2-He-H2O-NH3-CH4 system. These data are needed to constrain theoretical models of the interiors of the major planets

    High pressure cosmochemistry applied to major planetary interiors: Experimental studies

    Get PDF
    The measurement of equilibria in binary fluid-solid systems in diamond anvil cells, represents a major advance of the art of high-pressure experimentation. Vibrational spectroscopy, direct visual observations, and X-ray diffraction crystallography of materials confined in externally heated cells are the primary experimental probes being used. Adiabats in these systems are being measured in order to constrain models of heat flow in these bodies and to detect phase transitions by thermal anomalies. Other studies are directed toward interpreting high pressure reactions in these systems that are suggested by shockwave measurements, and developing methods for reaching high temperatures and high pressures of planetary interest in diamond cells. The overall objective of this project is to determine the properties of the H2-He-H2O-HN3-CH4 system and related small-molecule systems that are needed to constrain theoretical models of the interiors of the major planets

    Predicting adaptive responses - simulating occupied environments

    Get PDF
    Simulation of building performance is increasingly being used in design practice to predict comfort of occupants in finished buildings. This is an area of great uncertainty: what actions does a person take when too warm or suffering from glare; how is comfort measured; how do groups of people interact to control environmental conditions, etc? An increasing attention to model these issues is evident in current research. Two issues are covered in this paper: how comfort can be assessed and what actions occupants are likely to make to achieve and maintain a comfortable status. The former issue describes the implementation of existing codes within a computational framework. This is non-trivial as information on local air velocities, radiant temperature and air temperature and relative humidity have to be predicted as they evolve over time in response to changing environmental conditions. This paper also presents a nascent algorithm for modelling occupant behaviour with respect to operable windows. The algorithm is based on results of several field studies which show the influence of internal and external temperatures on decision making in this respect. The derivation and implementation of the algorithm is discussed, highlighting areas where further effort could be of benefit

    Optimal dynamic remapping of parallel computations

    Get PDF
    A large class of computations are characterized by a sequence of phases, with phase changes occurring unpredictably. The decision problem was considered regarding the remapping of workload to processors in a parallel computation when the utility of remapping and the future behavior of the workload is uncertain, and phases exhibit stable execution requirements during a given phase, but requirements may change radically between phases. For these problems a workload assignment generated for one phase may hinder performance during the next phase. This problem is treated formally for a probabilistic model of computation with at most two phases. The fundamental problem of balancing the expected remapping performance gain against the delay cost was addressed. Stochastic dynamic programming is used to show that the remapping decision policy minimizing the expected running time of the computation has an extremely simple structure. Because the gain may not be predictable, the performance of a heuristic policy that does not require estimnation of the gain is examined. The heuristic method's feasibility is demonstrated by its use on an adaptive fluid dynamics code on a multiprocessor. The results suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change. The results also suggest that this heuristic is applicable to computations with more than two phases

    An optimal repartitioning decision policy

    Get PDF
    A central problem to parallel processing is the determination of an effective partitioning of workload to processors. The effectiveness of any given partition is dependent on the stochastic nature of the workload. The problem of determining when and if the stochastic behavior of the workload has changed enough to warrant the calculation of a new partition is treated. The problem is modeled as a Markov decision process, and an optimal decision policy is derived. Quantification of this policy is usually intractable. A heuristic policy which performs nearly optimally is investigated empirically. The results suggest that the detection of change is the predominant issue in this problem

    High pressure cosmochemistry applied to major planetary interiors: Experimental studies

    Get PDF
    Progress is reported in the development of the P-T-X diagram for 0 less than or = X less than or = 0.50 and in the development of techniques for measuring adiabats of phases of NH3-H2O. The partial phase diagram is presented, investigations of the compositions of ammonia ices are described, and methods for obtaining the infrared spectra of ices are discussed

    Twenty first century standards for thermal comfort : fostering low carbon building design and operation

    Get PDF
    Nearly 50% of energy consumed in the developed world is consumed in buildings. Despite regulation intent, many new buildings are energy profligate. Thermal comfort standards are partly responsible for this increase in consumption. In this volume, Roaf et al. have described the evolution of current comfort standards and problems inherent in buildings they shape, and have discussed two new methods of regulating thermal comfort in buildings which recognize human adaptation and have potential for reduced energy demand. These new methods incorporate adaptation through a fixed heating and cooling threshold approach (similar to Japanese Cool-Biz) or through heating and cooling setpoints calculated based on outdoor conditions(using CEN standard equations). The impact on comfort and energy demand of these new approaches is investigated for a London office building. Variables such as future climate, future building upgrades, setback temperatures, internal gains and ventilation are also explored. Adoption of the new approaches gave a 50% reduction in heating and cooling energy for the simulated office. The new approach together with optimized setback temperatures, ventilation strategies and higher efficiency equipment gives predicted heating and cooling energy demand close to zero. Recommendations for future regulation, design and operation of buildings are proposed
    • …
    corecore